Functional expression of the human HepG2 and rat adipocyte glucose transporters in Xenopus oocytes. Comparison of kinetic parameters.

نویسندگان

  • K Keller
  • M Strube
  • M Mueckler
چکیده

Facilitated glucose transport is a ubiquitous characteristic of animal cells carried out by a family of membrane glycoproteins. Two members of this gene family are the well characterized human erythrocyte protein that has been cloned from the HepG2 cell line and the insulin-sensitive transporter that has been cloned from adipocytes and muscle tissue. In the present study the HepG2 and adipocyte glucose transporters were functionally expressed in Xenopus oocytes after injection of synthetic mRNAs produced by transcription in vitro from cloned cDNAs. Both 2-deoxyglucose uptake and 3-O-methylglucose transport were increased several-fold over basal levels in mRNA-injected oocytes. Increased uptake of 2-deoxyglucose was inhibited completely in the presence of cytochalasin B, and 3-O-methylglucose transport was blocked by D-glucose but not by L-glucose. The half-saturation constant and turnover number for 3-O-methylglucose transport at 22 degrees C via the HepG2 transporter were estimated to be 21 mM and 2.2 x 10(3) s-1 under equilibrium exchange conditions. The half-saturation constant for 3-O-methylglucose transport via the adipocyte transporter under the same conditions was estimated to be 1.8 mM. These data prove the functional identity of the cloned HepG2 and adipocyte cDNAs and indicate that the HepG2 and adipocyte transporters display similar kinetic behavior when expressed in the frog oocyte membrane as compared with their native membrane environments. Thus, the difference in the equilibrium exchange kinetic parameters for glucose transport in the erythrocyte and the adipocyte is a result of the expression of two distinct glucose transporter proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Studies with antipeptide antibody suggest the presence of at least two types of glucose transporter in rat brain and adipocyte.

Three antipeptide antibodies were prepared by immunizing rabbits with synthesized short peptides corresponding to residues 215-226, 466-479, and 478-492 predicted from the cDNA of both the human hepatoma HepG2 and rat brain glucose transporters. All three antibodies were found to precipitate quantitatively the [3H]cytochalasin B photoaffinity-labeled human erythrocyte glucose transporter. Each ...

متن کامل

Effect of antisense oligonucleotides on the expression of hepatocellular bile acid and organic anion uptake systems in Xenopus laevis oocytes.

A Na(+)-dependent bile acid (Na+/taurocholate co-transporting polypeptide; Ntcp) and a Na(+)-independent bromosulphophthalein (BSP)/bile acid uptake system (organic-anion-transporting polypeptide; oatp) have been cloned from rat liver by using functional expression cloning in Xenopus laevis oocytes. To evaluate the extent to which these cloned transporters could account for overall hepatic bile...

متن کامل

Glucose transporters serve as water channels.

Water traverses the plasma membranes of some eukaryotic cells faster than can be explained by the water permeability of their lipid bilayers. This has led to a search for a water channel. Our previous work identified glucose transporters as candidates for such a channel. We report here that Xenopus laevis oocytes injected with mRNA encoding the brain/Hep G2, adult skeletal muscle/adipocyte, or ...

متن کامل

The S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane .

Abstract The S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane . Saeed Hajihashemi1 , 1-Assistant professor, PhD in Physiology, Department of Physiology, School of Medical science, Arak University of Medical Sciences. Introduction: ROMK channel is localized on the apical membrane of the nephron. Recent studies suggest that endocytosis of ROMK chan...

متن کامل

Regulation of CFTR chloride channel trafficking by Nedd4-2: role of SGK1

Introduction: The cystic fibrosis transmembrane conductance regulator (CFTR) chloride (Cl−) channel is an essential component of epithelial Cl− transport systems in many organs. CFTR is mainly expressed in the lung and other tissues, such as testis, duodenum, trachea and kidney. The ubiquitin ligase neural precursor cells expressed developmentally down-regulated protein 4-2 (Nedd4-2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 264 32  شماره 

صفحات  -

تاریخ انتشار 1989